Positive autoregulation of the yeast transcription factor Pdr3p, which is involved in control of drug resistance.

نویسندگان

  • A Delahodde
  • T Delaveau
  • C Jacq
چکیده

Simultaneous resistance to an array of drugs with different cytotoxic activities is a property of Saccharomyces cerevisiae, in which the protein Pdr3p has recently been shown to play a role as a transcriptional regulator. We provide evidence that the yeast PDR3 gene, which encodes a zinc finger transcription factor implicated in certain drug resistance phenomena, is under positive autoregulation by Pdr3p. DNase I footprinting analyses using bacterially expressed Pdr3p showed specific recognition by this protein of at least two upstream activating sequences in the PDR3 promoter. The use of lacZ reporter constructs, a mutational analysis of the upstream activating sequences, as well as band shift experiments enabled the identification of two 5'TC CGCGGA3' sequence motifs in the PDR3 gene as consensus elements for the binding of Pdr3p. Several similar sequence motifs can be found in the promoter of PDR5, a gene encoding an ATP-dependent drug pump whose Pdr3p-induced overexpression is responsible for drug resistance phenomena. Recently one of these sequence elements was shown to be the target of Pdr3p to elevate the level of PDR5 transcription. Finally, we provide evidence in the absence of PDR1 for a PDR3-controlled transcriptional induction of the drug pump by cycloheximide and propose a model for the mechanism governing the transcriptional autoregulation of Pdr3p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential regulation of ceramide synthase components LAC1 and LAG1 in Saccharomyces cerevisiae.

In Saccharomyces cerevisiae, the essential ceramide synthase reaction requires the presence of one of a homologous pair of genes, LAG1 and LAC1. Mutants that lack both of these genes cannot produce ceramide and exhibit a striking synthetic growth defect. While the regulation of ceramide production is critical for the control of proliferation and for stress tolerance, little is known of the mech...

متن کامل

Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants.

The cDNA from activated mutants of the homologous transcription factors Pdr1p and Pdr3p was used to screen DNA microarrays of the Saccharomyces cerevisiae complete genome. Twenty-six overexpressed targets of the PDR1-3 and/or PDR3-7 mutants were identified. Twenty-one are new targets, the majority of which are of unknown function. In addition to well known ABC transporters, these targets appear...

متن کامل

Early transcriptional response of Saccharomyces cerevisiae to stress imposed by the herbicide 2,4-dichlorophenoxyacetic acid.

The global gene transcription pattern of the eukaryotic experimental model Saccharomyces cerevisiae in response to sudden aggression with the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was analysed. Under acute stress, 14% of the yeast transcripts suffered a greater than twofold change. The yeastract database was used to predict the transcription factors mediating the response...

متن کامل

New insights into the pleiotropic drug resistance network from genome-wide characterization of the YRR1 transcription factor regulation system.

Yrr1p is a recently described Zn(2)Cys(6) transcription factor involved in the pleiotropic drug resistance (PDR) phenomenon. It is controlled in a Pdr1p-dependent manner and is autoregulated. We describe here a new genome-wide approach to characterization of the set of genes directly regulated by Yrr1p. We found that the time-course production of an artificial chimera protein containing the DNA...

متن کامل

Isolation of a putative Candida albicans transcriptional regulator involved in pleiotropic drug resistance by functional complementation of a pdr1 pdr3 mutation in Saccharomyces cerevisiae.

Three Candida albicans genes, designated FCR (for fluconazole resistance), have been isolated by their ability to complement the fluconazole (FCZ) hypersensitivity of a Saccharomyces cerevisiae mutant lacking the transcription factors Pdr1p and Pdr3p. Overexpression of any of the three FCR genes in the pdr1 pdr3 mutant resulted in increased resistance of the cells to FCZ and cycloheximide and i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 1995